Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-field Raman spectroscopy using a sharp metal tip.

Near-field Raman spectroscopy with a spatial resolution of 20 nm is demonstrated by raster scanning a sharp metal tip over the sample surface. The method is used to image vibrational modes of single-walled carbon nanotubes. By combining optical and topographical signals rendered by the single-walled carbon nanotubes, we can separate near-field and far-field contributions and quantify the observ...

متن کامل

Single-molecule surface-enhanced Raman spectroscopy.

A general overview of the field of single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) as it stands today is provided. After years of debates on the basic aspects of SM-SERS, the technique is emerging as a well-established subfield of spectroscopy and SERS. SM-SERS is allowing the observation of subtle spectroscopic phenomena that were not hitherto accessible. Examples of the latter...

متن کامل

The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy.

An explanation of the relative intensity fluctuations observed in single-molecule Raman experiments is described utilizing both single-molecule tip-enhanced Raman spectroscopy and time-dependent density functional theory calculations. No correlation is observed in mode to mode intensity fluctuations indicating that the changes in mode intensities are completely independent. Theoretical calculat...

متن کامل

Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.

Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, s...

متن کامل

Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACS Nano

سال: 2017

ISSN: 1936-0851,1936-086X

DOI: 10.1021/acsnano.7b02058